CartPole - Thomas Loux

CARTPOLE
ENVIRONMENT

« Purpose : controle the system to
make i1t stable

« Actions : push left, right or do
nothing

« State : position, velocity, angle
and angular speed

« Position and angular limits

TIMELINE

O O o

Get familiar Try two Compare Try

with gym solutions with non RL IMmprovement
Q Table and Deep Q- solutions Aiming at improving
Learning Random, do-nothing stability, convergence,

policies training time

Two main approaches

It's a continuous state problem'!

We can either discretise the problem or try to
approach the expected reward function using
machine learning

Q-Table - principles

e Discretization
e Update using the Bellman-equation

Training of the model

——- Goal

— mean=250.31 over the last 20 bactches

= FI 5

gt

of

Mumber ¢

40 60
Batches of 100 episodes

Find the best hyperparameters

As a reminder : evaluate_model outputs a tuple (g_table, scores, steps_history, exploration_list)

Furthermore, MIN_EXPLORE is set to 0.@5

PATH_SAVE = "save models/"

initials = np.array([e.1, .2, 0.3, @.4, 0.5, 0.6, ©.7, 0.8, 0.9, 1.0])

decays = np.array([0.9,0.99,0.995,0.999,0.9995,0.9999,0.99995])

NB_EPISODES = 10_000

results = np.zeros(shape=(len(initials), len(decays))).tolist()

timeBegin = time.time()

for i in tgdm(range(len(initials))):

for j in range(len(decays)):

rslt = evaluate_model(3, NB_EPISODES, exploration=initials[i], exploration_decay=decays[j], tqdm_disable=True)
results[il [j] = rslt[2][-20:]

timeEnd = time.time()

print(f"Processed time is {timeEnd - timeBegin} s")

e Fast training

e Easy to implement

e Need to the wisely choose hyperparameters
(more generally true in RL)

Deep Q-Learning - principles

e Use of machine learning to estimate Q-function
e Recall learning from past experience
e Bellman equation

The difficult part:

e Ensure the Q-value convergence to the optimal policy
e While using only an approximation of the Q value, which | also want to
convergence

Risk of instability

Main idea : experience replay to fit the neural network

def replay(self):
#Get a batch of experiences
batch_size = 20
if len(self.memory) < batch_size:
return
else:
batch = random.choices(self.memory, k=batch_size) #state, action, reward, next_state, done
state, action, reward, next_state, done = map(np.array, zip(xbatch))
#Compute the target
#Applying the Bellman equation
argmax = np.argmax(self.model_predict.predict(np.concatenate(next_state, axis=@), verbose=0), axis=1)
target = reward + self.gamma * self.model_learn.predict(np.concatenate(next_state, axis=@), verbose=0) [np.arange(batch_size),argmax] % (1 - done)
#Compute the target for the action
target_f = self.model_learn.predict(np.concatenate(state), verbose=0)
#update for each target on the action coordinate
target_f[np.arange(len(action)), action] = target
#Train the model
state = np.concatenate(state)

self.model_learn.fit(state, target_f, epochs=1, verbose=0, batch_size=1)

self.epsilon_exploration %= self.exploration_decay
self.epsilon_exploration = max(0.05, self.epsilon_exploration)

Deep Q-Learning - Result

100 (400

100 400

Catastrophic forgetting
Long training time (2 hours)

Why it works

e The problem can be approximated by a linear function when the angle is
small

e The angular momentum is a concave function with a small derivative
(when angle is small). The discrete approach is then possible.

Other non-RL policies

Other non-RL policies

Other non-RL policies

Further improvements

e Asynchronious episodes

e Better models (Actor-critic)

 Provide efficient policy to
learn in the first place

